Convection

Convection:

Convection-heat transfer between a solid surface and a fluid (air, gas, liquid)
Forced convection-moving fluid (pump water through a pipe)
Free (natural) convection- fluid circulating (a pipe subjected to outside ambient air with no wind)

Fluid properties are critical in determining heat transfer

- Laminar or turbulent flow (Reynolds number)
- Velocity
- Viscosity
- Density
$q_{c v}=h A\left(t_{w}-t_{\infty}\right)$ (flow over an external surface)
Where:
$q_{c v}=$ heat transfer (convection)
$h=$ convection heat transfer coefficient (different value for different substances and scenarios)
$t_{w}=$ wall temperature
$t_{\infty}=$ fluid temperature
Flow through a pipe
$q_{c v}=h A\left(t_{w}-t_{\text {fluid avg }}\right)$
Where:
$q_{c v}=$ heat transfer (convection)
$h=$ convection heat transfer coefficient (different value for different substances and flow)
$t_{w}=$ wall temperature
$t_{\text {fluid avg }}=$ bulk or average energy temperatures
$q_{c v}=h A\left(t_{w}-t_{\text {fluid avg }}\right)=q_{c v}=m \dot{m} c_{p}\left(t_{e}-t_{i}\right)$
Where:
$\dot{\mathrm{m}} m=$ mass flow rate of fluid
$t_{e}=$ exit fluid temperature
$t_{i}=$ inlet fluid temperature

Water at $20^{\circ} \mathrm{F}$ flows across a long cylinder (diameter $=3.5^{\prime \prime}$). The cylinder surface is maintained at $32^{\circ} \mathrm{F}$ and h (convection heat transfer coefficient) for this type of flow is $1200 \mathrm{btu} /\left(\mathrm{hr} \cdot \mathrm{ft}^{\wedge} 2 \cdot{ }^{\circ} \mathrm{F}\right)$. Calculate the heat transfer per foot of length.

$$
\begin{aligned}
& q_{c v}=h A\left(t_{w}-t_{\infty}\right) \\
& q_{c v}=h(\pi d l)\left(t_{w}-t_{\infty}\right) \\
& \frac{q_{c v}}{l}=h(\pi d)\left(t_{w}-t_{\infty}\right) \\
& =\frac{1200 b t u}{h r f t^{2} \mathrm{~F}}(3.14 * 3.5 \text { in }) \frac{f t}{12 i n}\left(32^{\circ} \mathrm{F}-20^{\circ} \mathrm{F}\right)=13,188 \frac{b t u}{h r f t}
\end{aligned}
$$

$5 \mathrm{~kg} / \mathrm{sec}$ of water is heated from $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ as it flows through a heat exchanger. How much heat is added?

Find c_{p} at average temp (45-20) $/ 2=12.5+20=32.5^{\circ} \mathrm{C}$
$c_{p}=4.178 \frac{\mathrm{~kJ}}{\mathrm{~kg}^{\circ} \mathrm{C}}$ from reference chart $32.5^{\circ} \mathrm{C}$
$q_{c v}=\dot{\operatorname{mc}} _\mathrm{p}\left(t_{e}-t_{i}\right)$
$=\frac{5 k g}{s} 4.178 \frac{k J}{k g}{ }^{\circ} \mathrm{C}\left(45^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=522 \frac{\mathrm{~kJ}}{\mathrm{~s}}=522 \mathrm{~kW}$
Water flows at $2 \mathrm{~kg} / \mathrm{sec}$ at $140^{\circ} \mathrm{F}$ through a 5 m long section of 4 cm (1.57") diameter tubing. The h value (convection heat transfer coefficient) is known to be $3500 \mathrm{~W} /\left(\mathrm{m}^{\wedge} 2^{\circ} \mathrm{C}\right)$. What ΔT (change in temperature) is needed between the pipe wall and the flowing water to cause a $5^{\circ} \mathrm{C}$ increase in water temperature? c_{p} from table is $4180 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$
$q_{c v}=\dot{\mathrm{m}} c_{p}\left(t_{e}-t_{i}\right)$
$q_{c v}=2 \frac{\mathrm{~kg}}{\mathrm{~s}} 4180 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}}\left(5^{\circ} \mathrm{C}\right)=4.18 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~s}}$
$q_{c v}=h(\pi d l)\left(t_{w}-t_{\infty}\right)$

